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Modeling Spacer Dynamics during Ice-
Shedding-Induced Vibrations 

László E. Kollár an Masoud Farzaneh 

Abstract—Ice and snow shedding from conductors and cables 
may result in high-amplitude vibrations and dynamic forces 
damaging to the power lines. The application of spacers in 
conductor bundles reduces the severity of vibration; however, it 
increases cable tension and stress in the neighborhood of the 
spacer clamps. Moreover, the spacers themselves are exposed to 
excessive dynamic forces. A four-degree-of-freedom model has 
been developed to simulate ice-shedding-induced vibration of the 
spacer including its attachment points unto the cable. Although 
this model considers the vertical plane of the spacer only, it 
implies the dynamic effects of the whole set of cables in the span. 
The model is compared to a formerly developed model of 
vibrating bundled conductors in terms of the maximum vertical 
displacement of the cable at the spacer clamp during the 
vibration. The proposed model can be used to calculate the 
rotation of the spacer and the forces acting on it during the 
vibration, and thus, to predict when the vibration results in 
damaging dynamic forces. 

I.  INTRODUCTION 
PACERS and spacer dampers are often used in 
transmission lines in order to maintain the distance 

between individual conductors in a bundle. Spacers were used 
for electrical reasons originally, but they also help to attenuate 
vibrations, since they create shorter subspans as compared to 
the length of the whole span; moreover, spacer dampers 
possess elastic and damping properties. Vibrations may arise 
due to several reasons such as wind load, ice shedding or 
conductor breakage. The maximum forces during these 
vibrations act at the suspension as well as near the spacer 
clamp. Phenomena leading to asymmetric dynamic loads like 
ice shedding from one subconductor or conductor breakage 
cause the rotation of the bundle, and thereby increase dynamic 
forces. Thus, the determination of bundle rotation is also of 
interest when studying the dynamics of bundled conductors. 
The present paper deals with the dynamic behavior of twin 
bundles in the neighborhood of the spacer following ice 
shedding from one subconductor. 

Vibration of transmission line cables, including ice-
shedding-induced vibration and its modeling have been the 
subject of many publications. A series of load-dropping tests 
were carried out in [1] to simulate ice shedding and obtain the 
maximum jump height arising during the resulting vibration. 
McClure and collaborators [2], [3] applied the commercial 
finite element analysis software, ADINA [4], for modeling ice 
shedding from a single span of transmission lines. Previous 

studies of the present authors also used the finite element 
method to model ice shedding from a single span considering 
the mechanical properties of ice [5], and to simulate the 
vibrations following ice shedding from bundled conductors 
[6]. The latter model considered vibrations in the vertical 
plane; it did not predict, however, the rotation of the bundle. 
Reference [7] developed a mathematical model to simulate 
vortex-induced vibrations in bundled conductors with spacer 
dampers, and computed forces at the spacer connection and 
maximum bending strains in a conductor. The present paper 
introduces a four degree-of-freedom (DOF) model of a twin 
bundle in the plane of the spacer and simulates ice-shedding-
induced vibrations. This model does not provide information 
about the cable vibration along its entire length, but it includes 
the dynamic effects of the whole set of cables, and thus, it is 
applicable to determine the rotation of the spacer and the 
forces acting on it. 

II.  SPACERS 
Typical spacers consist of a rigid central frame and arms 

which are attached to the central frame by flexible joints. The 
free end of each arm is clamped to one subconductor. The 
elastic properties of such spacers lie in the flexibility of the 
joints. Arms are allowed to rotate a few degrees around the 
joint with increasing resistance until the rotating part will be 
blocked and further deformation will only be possible by the 
elongation of spacer material. A recent survey on spacers 
including types, materials, design characteristics, test methods 
and field experience is presented in [8]. Fig. 1 shows a spacer 
which is used in twin bundles. 

 

 
 

Fig. 1. Spacer in a twin bundle of a transmission line 
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III.  CONSTRUCTION OF THE 4-DOF MODEL 
The 4-DOF model of a spacer in a twin bundle is sketched 

in Fig. 2. The conductors are hanging in the y-z plane, 
whereas the spacer connects them at mid-span perpendicularly 
to that plane. The model simulates vibration in the x-z plane 
only. Symbols  and  stand for the mass of the ice-
loaded cables. The elasticity of the spacer and cables (or 
cable-ice compositions) in the vertical direction is modeled by 
nonlinear springs. The vector   
includes the spring constants describing the elasticity of the 
spacer. The elasticity of cables in the vertical direction is 
represented by springs with constants included in the vectors 

 and  . 
The elasticity of cables in the transverse direction may be 
modeled satisfactorily by a linear spring; thus, single 
constants,  and , describe the elasticity of two cables in 

the transverse direction. The damping vectors 
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structural damping,  and , and for aerodynamic 
damping,  and , of cables in the vertical direction; 

whereas the vectors  and 

 include constants accounting for the 
damping of cables in the transverse direction. The structural 
damping of the spacer is also considered, the corresponding 
damping constant being . The general coordinates of the 
system are the transverse displacements of the masses,  and 
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Fig. 2. The 4-DOF model of spacer in a twin bundle 
 

A. Mass of Iced Cable 
The mass of the iced cable, , is calculated from the 

following formula: 
cm
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where μ  is mass per unit length, iceρ  is density of ice, D is 
diameter of bare cable, b is thickness of ice accumulation 
which is assumed to be circular, L is length of the span, and 
the index i refers to subconductors in the bundle. If cable i is 
bare, then  = 0, and (1) is simplified as follows: ib Lm ici μ= . 
The mass of the spacer is approximated by the following 
expression: 

ssss lAm ρ=  (2) 

where , , sA sl sρ  are the cross-sectional area, the length and 
density of spacer, respectively. The spacer mass is added to 
the mass of the iced cable as follows: 

2,1,
2

=+= i
m

mm s
cii  (3) 

This simplification does not cause any noticeable difference in 
the results, because the mass of the spacer is two to three 
orders of magnitude less than that of the iced cable. 

B. Spring Constants of Cable-Ice Composition 
The spring constants of the cable-ice composition are 

determined by applying the statics of suspended cables [9]. 
The calculation is carried out in three steps. First, the 
horizontal component of initial tension in the bare cable is 
determined; then, the displacement due to uniformly 
distributed ice load is computed at the midpoint of the span 
where the spacer is assumed; and finally, the displacement – 
load relationship is derived given the application of a point 
load at mid-span of the iced cable. 

The initial tension in the bare cable, H, is obtained by 
solving the following equation: 
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with f denoting the sag of the span, which is prescribed, and g 
the gravitational constant. Note that the calculation presented 
in this section is the same for the two cables, thus index i is 
omitted for simplification. 

The additional displacement at the midpoint of the span, 
, due to a uniformly distributed load, p, is provided by the 

expression: 
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where  is the additional tension owing to the distributed 
load, and obtained from the third order equation: 
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with ( ) ( )EAHLLHgL e /// 22 μλ = . The sag and the additional 
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displacement determine the initial configuration of the system, 
in which . dwfz +=0

During cable vibration a point load is applied on the cables 
at mid-span from the spacer. The relationship between the 
resulting additional vertical displacement, , and the vertical 
component of force, , may be obtained from the vertical 
equilibrium of the cable and the cable equation, and is 
described by the formula: 

pw

zP

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

HP

gLh

hH
LP

w pz

pz

z
p ~2

~
1~4

μ
 (7) 

where the increment in the cable tension, , due to the point 
load is obtained from a third order equation: 
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with dhHH +=
~ , ( )( 4/2 )~ 22 DbDice −++= πρμμ , and =2~

λ  

. In the range of ( ) ( EAHLLHgL e /// 2μ ) 33 ≤≤− pw , the 
dependence ( )pz wP  may closely be approximated by a third 
order polynomial. Since neither the cable jump nor its drop 
exceeds 3 m in the cases considered in this project, a third-
order-polynomial fit is applied to express the point load – 
additional vertical displacement relationship, ( )pz wP . Then, 
the spring force – vertical displacement relationship, ( )zFcz , 
is obtained after applying the following transformation: 

 and . Thus, the spring constants 
in the vectors  and  are defined as follows: 
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The spring constants describing the elasticity of cable-ice 
compositions in the transverse direction are obtained from the 
relationship between the transverse component of the point 
load, , and the displacement, , caused by this load. If the 
vertical displacement due to the transverse load is neglected, 
then this relationship may be derived in a similar way as that 
between the vertical load, , and the resulting vertical 
displacement, , to obtain 
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where the additional cable tension, , due to the load, , 
is calculated from the following equation: 
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The transverse motion of cables does not exceed the range of 

the distance between subconductors, i.e. , where a linear 
approximation is satisfactory. Then, the spring force – 
transverse displacement relationship may simply be written as: 

sl

2,1, =−= ixcF ixicxi  (12) 

C. Spring Constants of Spacer 
Owing to the performance of spacers, such as the one 

shown in Fig. 1, the elastic properties of spacer should be 
modeled by a nonlinear spring rather than a linear one. More 
precisely, spring characteristics consist of two parts: (i) a 
cubic function until a critical deformation at which the 
rotation of the arms is blocked, and (ii) a linear function in the 
region where further deformation is possible only by 
elongation of the spacer material (see Fig. 3). If it is assumed 
that the value of the cubic function is zero for zero 
deformation and so is its tangent, and furthermore that the 
cubic function has inflexion at zero, then the constants , 

 and  are all zero in the cubic part. The only nonzero 
constant is obtained from the condition that the tangents of the 
two parts at the connection should be identical, and equal to 

. Thus, , with  denoting 
Young’s modulus of spacer in the linear part. The symbol 
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The constants,  and , are zero in the linear part, the 
constant  is equal to , and the constant  is 
obtained from the condition that the cubic and linear functions 
take the same value at the connection; thus 
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Fig. 3. Spring characteristics of spacer 



IWAIS XII, Yokohama, October 2007 

relationship, , is defined as follows: ( )lFcs Δ
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D. Structural Damping and Aerodynamic Damping 
The damping forces which result from the structural 

damping of the cables are proportional to the velocity of 
masses  and . The damping constants  and  are 
calculated from the formula: 
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where ξ is damping ratio, A and E are cross sectional area and 
Young’s modulus of cable, respectively, and  is Young’s 
modulus of ice. 

iceE

The damping force owing to aerodynamic damping is 
proportional to the square of velocity. The damping constants 

 and  are determined as follows: 12d 22d
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where the symbols  and ρ stand for drag coefficient and air 
density, respectively, whereas  is the projected 
area of the iced cable. Then the total damping force may be 
written in the form: 
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Damping constants in the transverse direction are 
determined in the same way, and so, the damping force in the 
transverse direction takes the form: 

2,1,2
21 =−−= ixdxdF ixiixidxi &&  (19) 

The structural damping of spacer is calculated from a 
formula similar to (16), with the spacer assumed to be ice free: 
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where  is approximated as the tangent of the line drawn 
between the origin and the connection point of the cubic and 
the linear part of the stress-strain curve. The damping force 
has the following form: 
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E. Equations of Motion 
The equations of motion of the system may be obtained by 

means of the Lagrangian equations of the second kind 
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where , ,  and  are the general 
coordinates,  
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is the kinetic energy, and  is the general force including the 
spring forces, damping forces and gravity: 
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where ϕ is the angle of spacer rotation. If the same ice load is 
assumed on the two cables initially, then 
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IV.  SIMULATION OF ICE SHEDDING FROM ONE 
SUBCONDUCTOR IN A TWIN BUNDLE 

Results of simulating ice shedding from either 
subconductor in a twin bundle are presented in this section. 
First, parameter values need to be specified; then the model 
has to be compared to a finite element model developed in a 
previous study [6] by means of vibration amplitudes; and, 
finally, the rotation of the bundle and the force acting on the 
spacer has to be determined for different values of ice 
thickness. 

A. Parameter Values 
The twin bundle considered in the model consists of two 

identical Bersfort conductors, thus, the cable parameters listed 
in Table 1 are the same for the two cables. 

 
TABLE I 

CABLE PARAMETERS 
 

Cable parameter Symbol and unit Value 
Diameter D (mm) 35.6 
Cross sectional area 

A ( ) 2mm 747.1 

Length L (m) 200 
Mass per unit length μ (kg/m) 2.37 

Young’s modulus E (GPa) 67.6 
 

The damping ratio of cables is assumed to be 2% in both 
vertical and transverse directions. The damping ratio of spacer 
is set at 20%, based on [10]. The drag coefficient, , is 
taken to be 1.25 as proposed in [11]. The density and Young’s 
modulus of ice are chosen so that they correspond to glaze ice, 
i.e. 

DC

900=iceρ 3kg/m  and = 10 GPa. The spacer is 
assumed to be made of aluminum, thus its density and 
Young’s modulus are: 

iceE

2700=sρ
3kg/m  and = 70 GPa 

respectively. For simplification, the spacer is assumed to be 
cylindrical with a length of = 0.5 m and an average cross-

sectional area of = 0.0021 

sE

sl

sA 2m . The sag of the unloaded 
cable is chosen as 6 m, while the thickness of ice 
accumulation is varied between 10 mm and 60 mm in 
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consecutive simulations. The ice load is identical on the two 
subconductors before shedding, and full ice shedding is 
modeled from either subconductor. 

B. Comparison with a Former Model 
Simulation results are compared with those obtained by a 

previously developed finite element model [6] by means of 
jump height of the unloaded cable at mid-span where the 
spacer is attached. The model of twin bundle in horizontal 
plane with one spacer constructed in [6] was applied to 
compute jump heights. Fig. 4 compares the results obtained by 
the two models. The increase of jump height with ice 
thickness is slightly slower according to the present model. 
This model predicts higher jumps at mid-span for lower ice 
loads; however, smaller jumps are obtained by applying this 
model following the shedding of higher ice loads. 

 

 
 

Fig. 4. Jump height of unloaded cable at spacer attachment point as computed 
by the present and a previously developed model 
 

C. Rotation of Bundle and Forces Acting on Spacer 
In order to simulate ice shedding from one subconductor, 

the cables are assumed to be in the loaded position initially, 
but the mass, stiffness and damping properties of the cable 
which ice sheds from are set as if that cable was bare. 
Simulations were carried out for a specific spacer 
characteristic, with rotation of spacer of  at the 
critical deformation where the arms are blocked. 
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Fig. 5. Rotation angle of spacer during vibration and in static equilibrium 
 

Fig. 5 shows the maximum rotation of the spacer during the 
vibration induced by the shedding of ice with different 
thicknesses. This figure also presents the angle of rotation in 

the static equilibrium when either cable is bare and the other 
one is still covered by ice. The angle  means that the mid-
point of the unloaded cable is pulled above that of the loaded 
one, with the spacer turned into vertical position. This angle is 
a limit for bundle rotation in static equilibrium when the 
difference between the loads on the two cables increases. 
However, under windy conditions the bundle rotation angle 
may exceed  as reported e.g. in [12]. Also, the peak value 
of this angle is significantly greater than  during the first 
cycle of the vibration after the shedding of ice with thickness 
greater than 20 mm, as shown in Fig. 5. However, the peaks in 
subsequent cycles decrease quickly due to cable damping. 
Time histories obtained after the shedding of a 40-mm-thick 
ice load are shown in Fig. 6. This figure shows clearly how 
the peaks in rotation angle decrease with time. The vibration 
of mid-points of the two cables in the vertical direction may 
also be observed. The sag of the unloaded cable, which is 6 m, 
increases up to 7.24 m when the cable is loaded with 40-mm-
thick ice. As the vibration decays and the system approaches 
its equilibrium, the spacer becomes close to vertical position 
(  in equilibrium); thus, the vertical projection of the 
distance between the two cables will also be close to 0.5 m, 
which is the spacer length. The time history of the force acting 
on the spacer is also shown in Fig. 6. A high peak appears in 
the first cycle, then peaks decrease fast in the next cycles. The 
spacer damping attenuates this peak force together with the 
high-frequency vibration which is superposed on the time-
history curve. 

o90
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Fig. 7 shows the peak forces acting on the spacer during 
the vibration due to the shedding of ice of different  
 

 
 
Fig. 6. Time history of vertical displacements of cables, rotation angle of 
spacer, and force in spacer following the shedding of 40-mm-thick ice load 
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Fig. 7. The maximum force acting on the spacer during vibration 
 
thicknesses. A comparison of Figs. 5 and 7 show that the rate 
of increase in the angle of rotation diminishes in the higher 
range of ice load, because further deformation of the system 
becomes more and more difficult, which results in steeper and 
steeper increase in the force developing in the spacer. 

V.  CONCLUSIONS 
This paper presented a 4-DOF model of twin bundles of 

conductors including a spacer at mid-span. The model 
simulates vibration in the vertical plane of the spacer due to 
ice shedding. As compared to a previously developed finite 
element model, this model does not provide information about 
the dynamics of the cable at any location except at the spacer 
attachment point. However, if the question is limited to the 
behavior of the cable system in the vicinity of the spacers, 
then this model is easier to apply and computationally less 
costly. 

From this study, recommendations for future work are: (i) 
development of more accurate spacer models by applying 
elastic and damping properties of specific spacers, (ii) 
extending the model to triple and quad bundles, and (iii) 
comparison of simulation results to experimental or field 
observations. 
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